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Abstract. Droughts and heatwaves are among the most impactful climate extremes. Their co-occurrence can have devastating 

consequences on natural and human systems. Early information on seasonal timescales on their possible occurrence is 

beneficial for many stakeholders. Seasonal climate forecast has gradually become more used; but limited skill in certain regions 

and seasons still hinders a broader use. Here we show that a simple forecast metric from a multi-system ensemble, the signal 10 

to noise ratio, can help overcome some limitations in the boreal summer. Forecasts of maximum daily near surface air 

temperature and precipitation in boreal summers with high signal to noise ratio tend to coincide with observed larger deviations 

from the mean than years with small signal to noise ratio. The same metric also helps identify processes relevant to seasonal 

climate predictability. Here we show that a positive phase of a North Atlantic Sea surface dipole during boreal spring may 

favor the occurrence of dry and hot summers in Europe.  15 

  

1 Introduction 

Droughts are typically slow onset climate extreme events (Mishra and Singh, 2010), yet they can be disruptive and affect 

millions of people every year (Below et al., 2007; Enekel et al., 2020). Heatwaves can intensify and trigger a faster drought 

evolution (Bevacqua et al., 2022). Compound drought and heatwaves can have devastating consequences on socio-economic 20 

and ecological systems, and may even compromise our ability to reach the UN sustainable development goal on climate action 

while strongly reducing the Earth system's current natural capacity to absorb and store carbon (Yin et al., 2023). The use of 

seasonal climate forecasts can provide actionable information to reduce the risks and the impacts of these events on key sectors 

like agriculture, energy, transport, water supply (Buontempo et al., 2018; Ceglar and Toreti, 2021).  

In the last couple of decades, climate predictions have shown important progress, they are successful in forecasting the 25 

evolution of various components of the climate system across the sub-seasonal to decadal time range (Merryfield et al., 2020; 

Meehl et al., 2021). Despite this progress, climate predictions still have low to moderate skill in many regions and seasons 

(e.g. European summer; Mishra et al. 2019); this limits their use and represents a barrier for stakeholders. A combination of 
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multiple forecast systems has shown overall benefits as compared with single systems and can improve forecast quality up to 

a certain extent (Hagedorn et al., 2005; Mishra et al., 2019). 30 

In this study we explore multi-system ensembles to test whether specific years with higher-than-normal predictability can be 

detected through the local relation between skill and signal to noise ratio (SNR; section 3). We then use this proposed approach 

to explore sources of summer climate predictability in Europe (Section 4). 

2 Methods and data  

The analysis is based on seasonal re-forecasts (also known as hindcasts) of mean boreal summer precipitation and 2-meter 35 

daily maximum temperature (Tmax) for the period 1993-2016 from ECMWF SEAS5 (S5, Johnson et al., 2019), UKMO 

GloSea6 (S600, MacLachlan et al., 2015), MeteoFrance (S8, Guérémy et al., 2021), CMCC (S35, Gualdi et al., 2020) and 

DWD (S21, Baehr et al., 2015), available from the Copernicus C3S Climate Data Store. The observationally based datasets to 

evaluate the re-forecasts are ERA5 (Hersbach al., 2020) for Tmax and GPCC (Schnider et al., 2011) for precipitation. The use 

of summer mean Tmax is not intended to characterize single heatwaves, but to estimate average maximum daily deviations 40 

from the mean on a seasonal scale. In a climatological sense, more intense, more frequent or longer heatwaves than usual 

generally define hot summers and hence average Tmax may be seen as a seasonal integrator of heatwave activity. Forecast 

skill is evaluated with the anomaly correlation coefficient (ACC) between the ensemble mean and the observational reference. 

Standardization of the anomalies of each ensemble member and the observational reference data is performed prior to the 

analysis. This step guarantees that each member from each system has a comparable year-to-year variability to the observed 45 

one for a particular variable. Additionally, the standardized Tmax anomalies are linearly detrended at the grid level and for 

each member of the re-forecasts and in ERA5 to isolate as much as possible the impact of the long term warming. In Section 

4, the Sea Surface Temperature (SST) and Geopotential Height (500 hPa, GPH500) fields are taken from ERA5 and ERSSTv5 

(Huang et al., 2017), respectively.  

 50 

In addition to the ACC, the metric computed as the product of the average multi-system ensemble mean deviation from the 

long term mean and the intrinsic ensemble coherence (inverse of standard deviation) is calculated with the signal to noise ratio 

for both Tmax and precipitation: 𝑺𝑺𝑺𝑺𝑺𝑺 =  𝝁𝝁𝒆𝒆
𝝈𝝈𝒆𝒆

, where 𝝁𝝁𝒆𝒆 is the multi-system ensemble mean and 𝝈𝝈𝒆𝒆 is the multi-system standard 

deviation after standardization, computed across ensemble members for every summer (June - August) and for each gridbox. 

25 members per system were used to have an equal contribution from each system.  55 
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3 Results  

3.1 Signal to noise ratio and forecast skill 

Figure 1 displays spatial maps of mean (boreal) summer Tmax ACC, time averaged SNR, and a scatter plot which shows the 

local relation between ACC and SNR. On average, skill values over land increase with higher SNR values. Negative values of 

ACC are nearly non-existent when the threshold of SNR exceeds the value of about 0.5 in the same gridbox. Statistically 60 

significant skill in Tmax is mostly confined to the tropics and sub-tropics. However, significant skill is also found in western 

North America, the eastern Mediterranean, central Asia and southern South America. Notable exceptions in the tropics are the 

Congo and parts of the Amazon rainforests. The patterns of SNR mirror those of ACC. There is a good agreement between 

areas of high skill (ACC) and areas with high SNR, something that is further confirmed by the local relation between ACC 

and SNR (Fig. 1c). 65 

 

Precipitation follows a similar behavior in terms of ACC and SNR, although statistically significant skill is less widespread 

(Fig. 1d-f). Areas under the influence of El Nino Southern Oscillation (ENSO; Lenssen et al., 2020) appear as regions with 

significant ACC and high SNR. Skillful values are mostly located in the Americas, the Maritime continent and Australia. 

Precipitation skill and SNR in Africa and Asia are much lower, making these the regions with the largest qualitative differences 70 

between the two variables.  

 

Based on the observed link between skill and SNR, we use the latter one as the single criterion to exclude from the re-forecasts 

years with very low and very high values to understand their impact on skill. When 25% of the years (6 in total) with the 

highest SNR (Fig. 2a) are excluded, the results overall show much lower values of ACC than when only 25% of the years with 75 

the lowest SNR are excluded (Fig. 2b). Furthermore, differences between the latter and the former result in many cases in 

higher values and more statistical significance than the ACC computed when only selecting years without the highest SNR 

(Fig. 2a,c). This result highlights the importance that these extreme SNR years can have on skill. In fact, only skill values 

computed when excluding the bottom 25% of SNR years (Fig. 2b) are comparable to the ones estimated when all years are 

used for the computation (Fig. 1a).  80 

 

Interestingly, using the same criterion to select ERA5 Tmax values reveals that in general, excluding years with high ensemble 

SNR results in lower absolute deviations from the mean than when the low SNR years are excluded (Fig. 2d). Additionally, 

these differences overall coincide with regions with significant skill differences (Fig. 2c,d). This implies that years with more 

extreme deviations from the mean (in the observations/reanalysis) may be identified a priori by calculating the ensemble SNR 85 

of the forecast, and that forecast systems are in general more skillful when large deviations from the mean occur. A notable 

exception is northwestern Europe, where an opposite behavior is identified; however, it vanishes when a later initialization 

(June) is used.    
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Similarly, the exclusion of years with high SNR also results in lower overall precipitation skill values than the one obtained 90 

when excluding low SNR years (Fig. 3a,b). Important skill differences appear in the Iberian Peninsula, Brazil, Australia and 

Indonesia (Fig. 3c), and in most cases imply an increase from non-significant to significant skill (Fig. 3 a and b, respectively).  

 

Contrasting with Tmax, the relation between ACC and mean absolute deviation from the mean in the observations is not 

obvious for precipitation (Fig. 3c,d). To further investigate this behavior, we analyzed the relationship between skill differences 95 

and the differences in absolute deviation from the mean for Tmax and precipitation, as usual using the re-forecasts that exclude 

the 25% of the years with the lowest and the highest SNR, respectively. This analysis (not shown) confirms a statistically 

robust relationship between skill and large deviations from mean observed precipitation, but still weaker than for Tmax.   

 

Figure 4 shows a clearer relation between the impact on skill of the most extreme years in terms of SNR and the absolute Tmax 100 

anomalies in ERA5, as compared with Figure 2. There is a good correspondence in all continents, including parts of Europe 

(Fig. 4 c,d) as opposed to the results presented in Figure 2. The only difference between the two figures is that they show the 

results from re-forecasts with different initialization dates. Both target the summer months (June-August), but Figure 2 shows 

the results from the May initialization and Figure 4 shows the results from the June initialization. In addition, similar qualitative 

conclusions can be made for precipitation (not shown).         105 

 

3.2. Sources of climate predictability in Europe   

 

Figure 5 shows how the ensemble SNR can also be applied to explore and understand sources of predictability and related 

climate processes. Figure 5a displays the time series of the SNR ratio (black) of the June initialized re-forecasts and the absolute 110 

value of the standardized ERA5 Tmax anomalies (gray) over Europe (defined in the area within 35-65N - 10W-35E, green 

box in Fig. 5d). The six years with the highest Tmax SNR in Europe are 1994, 2003, 2004, 2006, 2013 and 2015 (green dots 

in Fig. 5a), while the years with the lowest and the highest Tmax anomalies in Europe (after detrending) are 1993, 1996 and 

2004, and 1994, 2003, and 2006, respectively (blue and red dots in Fig. 5a, respectively).  

 115 

In terms of precipitation the largest SNR values are reached in 1994, 1997, 2003, 2006, 2011 and 2015, while the highest and 

lowest observed precipitation anomalies occur in 1997, 2010 and 2011 and 1994, 1996 and 2003, respectively. Common years 

with high absolute anomalies and high ensemble SNR are 1994, 2003, 2004, and 2006 for Tmax and 1994, 1997, 2003 and 

2011 for precipitation. The summers of 1994 and 2003 have been documented as both dry and hot in Europe (e.g. Toreti et al., 

2019) and also show high ensemble SNR for both Tmax and precipitation. These years are therefore good candidates to explore 120 

possible sources of predictability. Anomalies of 1994 and 2003 of observed summer SST and GPH500 reveal a dipole of 

positive SST anomalies in the western North Atlantic and negative SST anomalies in the central/eastern North Atlantic (Fig. 
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5d), and a stationary Rossby wave pattern in the summer with anticyclonic anomalies in the western North Atlantic, 

western/central Europe and central Russia, and cyclonic anomalies in the central/eastern North Atlantic, eastern 

Europe/western Asia and northeastern Asia. 125 

 

We hypothesize that years with a strong dipole in North Atlantic SST anomalies could precondition atmospheric flow, affecting 

hydroclimatic summer conditions in Europe. To test this hypothesis, we created an observed spring SST index (Fig. 5c) 

measuring the dipole strength defined as the difference in mean SST in the western and central/eastern centers of action (green 

boxes in Fig. 5e). Between 1982 and 2022, the years with the strongest dipole are identified before 1994 and after 2014, while 130 

years with the weakest dipole are almost exclusively found in the period 1995-2010, pointing to decadal/multi-decadal 

variability. A composite of summer SSTs and GPH500 (Fig. 5e), defined as the respective difference between the top 25% 

and the bottom 25% years based on the spring index, reveals similar patterns than those observed in 1994 and 2003 (Fig. 5d). 

The SST index estimated in spring is associated with persistent SST anomalies well into the summer. These long lasting SST 

anomalies appear to force (or reinforce) a stationary Rossby wave train that induces both dry and hot summer conditions over 135 

most of Europe.  

 

To further demonstrate the importance of this North Atlantic dipole for European summer climate, Figure 6 displays the added 

value of selecting each year the 60% of ensemble members that better reproduce the North Atlantic dipole index in the summer. 

The ranking is based on the values of the squared error of the index from each member with respect to ERA5. The reduced 140 

ensemble shows a clear, consistent and statistically significant improvement of skill of summer Tmax (Fig. 6a,b) and 

precipitation (Fig. 6c,d) in central and northwestern Europe for re-forecasts initialized in May (Fig 5a,c) and June (Fig 5b,d) 

as compared to the full ensemble. These improvements are only achieved by subsampling the members based on the summer 

dipole index for re-forecasts initialized in May and June. When the subsampling of members is based on the May index of the 

May initialized re-forests, there are no improvements of summer Tmax or precipitation skill in Europe, most likely because 145 

there is neither an improvement in the representation of the dipole in the summer (not shown). 

4 Discussion 

We have shown that a simple metric like the signal to noise ratio in a multi-system ensemble contains valuable information 

which can be used to inform in advance on possible exceptional years with large temperature and precipitation anomalies and 

extremes.  150 

  

The SNR also provides valuable information to detect potential sources of predictability. We have shown that, despite overall 

low skill, impactful events (i.e. anomalously dry and hot European summers) seem to be favored by a preceding dipole of high 

and low surface temperature anomalies in the western and central/eastern North Atlantic. These anomalies are identified in 

spring, persist through the summer and are associated with an anomalous stationary wave pattern showing anticyclonic 155 
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conditions over most of Europe, a prime driver of hot/dry summer conditions. Note that the composite analysis also reveals 

anomalously warm SSTs in the North Pacific, especially marked on the eastern flank. Therefore, a remote influence of the 

Pacific Ocean on the North Atlantic and Europe cannot be discarded. Dunstone et al. (2019) associate precipitation anomalies 

in central/northern Europe with a tripole pattern of North Atlantic SSTs in spring, which has the two northernmost centers of 

action partially collocated with the two centers of action here identified, hence qualitatively agreeing with our findings. 160 

Nedderman et al. (2019) also show that ensemble subsampling selecting members that best reproduce a process involving 

North Atlantic SSTs in spring followed by a Rossby wave train in late summer largely improves temperature forecasts in 

central/south-western Europe. Finally, the findings presented here also agree with the ones reported by Acosta Navarro et al. 

(2022), which show that improved forecasts of central North Atlantic SSTs in late spring/early summer increase skill in Europe 

during late summer thanks to a better-simulated atmospheric circulation. 165 

 

Significant skill improvements of Tmax and precipitation can be achieved in central and north-western Europe by subsampling 

ensemble members that better follow the evolution of the observed North Atlantic dipole temperature index during summer. 

Selecting members of the re-forecasts initialized in May that better agree with the observed dipole index in May, results in no 

clear improvement in the summertime dipole index or in the European climate. This points to the need for further efforts and 170 

analyses to understand this unexpected behavior. The proposed detection method based on ensemble SNR and North Atlantic 

SST pattern found here is nonetheless useful to explore sources of atmospheric predictability for summer forecasts in Europe 

and could likely be applied to other regions and seasons. 
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 250 
Figure 1: June-August Skill (ACC), time averaged SNR and scatterplots of local relation between ACC and SNR for Tmax (a-c) and 
precipitation (d-f). Each gray dot in (c,f) represents the values of ACC and SNR at each gridbox. Gray dots in (a,d) indicate 
statistically non-significant values with a 90% confidence based on a t-test. The re-forecasts are initialized every May. 
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 255 
Figure 2: Skill (ACC) of Tmax predictions excluding 25% of the years with highest (a) and lowest (b) local SNR. (c) Difference 
between (a) and (b). (d) Difference in the time-averaged absolute deviation from the mean in ERA5 Tmax, excluding years having 
25% of the lowest and highest local SNR, respectively. Gray dots in (a-c) indicate statistically non-significant values with a 90% 
confidence based on a t-test. The re-forecasts are initialized every May. 

 260 
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Figure 3: Same as Figure 2, but for precipitation.  
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Figure 4: Same as Figure 2, but for the re-forecasts initialized in June. 
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Figure 5: (a) Time series of mean spatial SNR (black line) in the re-forecasts and absolute deviation from mean (gray) for Tmax 

over Europe in ERA5 (green box in panel d). Blue and red dots in (a) show the top three coldest and hottest summers in Europe 

(after detrending), while green dots indicate the top six years in terms of Tmax SNR. (b) The same as (a) but for precipitation. Blue 

and red dots in (b) show the three driest and wettest summers in Europe, while green dots indicate the top six years in terms of 285 
precipitation SNR. The re-forecasts used in (a-b) are from the June initialization. (c) Time series of the index estimated as the 

difference between the western and central/eastern North Atlantic SST in spring (March-May). Blue and red dots indicate the 25% 

lowest and highest values, respectively. (d) Mean summer anomalies of SST and GPH500 for the years 1994 and 2003. Composites 

of summer SSTs and GPH500 for years with high minus low March-May SST index in the period 1982-2022. 
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Figure 6: Skill difference (ACC) between a selection of 60% of the members with the best JJA SST index score (lowest RMSE) and 

the full ensemble for summer (a) Tmax in forecasts initialized in May, (b) Tmax in forecasts initialized in June, (c) precipitation in 310 
forecasts initialized in May and (d) precipitation in forecasts initialized in June. Gray dots indicate statistically non-significant values 

with a 90% confidence based on a t-test.   
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